
Automated Testing Platform 
for Quality Control WP7

Jeremy Bridon
Summer 2010

aXelerate Solutions & Microsoft



Quality Control
● New WP7 devices need QC checks
● Hundreds of test procedures

○ Battery life
○ Accelerometer accuracy
○ Touch screen resolution
○ Etc...

● Requires time, money, and people
○ Solution: robots!

● Project: proof-of-concept automated 
QC testing platform

● Note: Though robots are still inferior 
to humans, automation saves time, 
money, and HR



Platform & Project Description
● Goals: Automatically test as many QC 

cases / procedures as possible
○ Hardware Platform: existing Adept 

Cobra s350 SCARA 4-Axis Robot
○ Software Platform: Windows & V+
○ Languages: C# (.net 4) & V+
○ Interface: USB / TTY Serial

● Subgoal: prove it can be fast and can 
test complex multi-device cases (i.e. 
calling)

● Image processing needed, closed-loop 
interface required, error recovery, ...

● Test a �true� vanilla device; no 
specialty software needed



Robot Controller
● Controlled by V+ scripting / programming language

○ Physical robot controller does movement interpolation
○ Language is similar to a state-machine

● Wrote a C# front-end that could execute movements 
(poses)

○ Test procedures evolved into a special test description 
language that also described robot poses

●  Error checking and recovery
○ Physical protection
○ Lowest level software boundary
○ High level software boundary



General Control Loop
● Close-loop system; i.e. internal feedback so the robot isn't 

moving blindly

1. For each procedure
1. Reset the robot position and device state
2. Execute the procedure

1. For each step
1. Save device state (screenshot)
2. Execute movement: press, slide, or complex path 

(with arguments like speed
3. Verify resulting state (screenshot comparison)

3. Save the result of the procedure



Screen Comparison
● How do we check screen states?

○ Can't do pixel-by-pixel tests, or average tests: inaccurate
○ Solution: break-down the scene based on known UI 

elements (i.e. buttons, boxes, icons, etc.)



Computer Visions & Image Processing
● Libraries:

○ OpenCV, AForge.NET, Tesseract-OCR
● Take the image and apply the projection matrix so that it's 

more "flat"
○ Done based on three color dots on the device screen

● Blur and average the image to remove "complex" details
○ Not a good approach, but necessary given camera 

resolution
● Do blob detection & edge detection

○ Merge the two together to build screen geometry (i.e. 
buttons, text, icons, etc..)

● Apply the detection rules (icon-specific detection)
○ Match geometry based on thresholds



Results & Extensions
● Tests work with high success rate

○ False-positive of 5%-10%!
○ Multi device works!

● Known Issues:
○ Slow; robot controller shouldn't be interfaced using the 

V+ scripting / command language
■ Solution: use direct USB control

○ Error Recovery; some test cases make error recovery 
hard

■ Solution: add special firmware, which defeats the
○ Setup is Costly; setting up a device is costly 

and annoying to do so
■ Solution: minimize overhead of the system 

initialization


