
1

An Artificially Intelligent Battleship Player Utilizing Adaptive

Firing and Placement Strategies

Jeremy G. Bridon, Zachary A. Correll, Craig R. Dubler, Zachary K. Gotsch

The Pennsylvania State University, State College, PA 16802, USA

The purpose of this paper is to provide a plan for an Artificially Intelligent (AI) player for the classic game of Battleship. In order to

accomplish this goal, the game is split into three logical areas: ship placement, targeting, and sinking strategy. This paper details the

specific AI objectives for each area, as well as the implementation of an intelligent system using genetic algorithms. This artificially

intelligent player will be tested in a competition against other artificially intelligent battleship opponents.

I. INTRODUCTION

HE CLASSIC game of Battleship involves two players, each

placing five ships of lengths two, three, three, four, and

five onto their ten by ten unit board. Taking turns, they select

board positions to strike. After an entire ship has been struck

by an opponent it is "sunk" and removed from the board, and

the player who sunk the ship is notified which type of ship

was removed. Once all of a player's ships have been removed,

the game is over and won by the player who still has ships

remaining.

 The use of heuristic algorithms, algorithms that provide

acceptable solutions but lack a formal proof, are become much

more commonplace in solving both dynamic goal and

computationally intense problems [4]. They are commonly

used to search for solutions to NP-complete problems and are

a popular topic in Artificial Intelligence research. Since the

game involves another player whose behavior is unknown, no

formal algorithmic solution exists. However, a heuristic

algorithm can find arising patterns in the opponent's play and

potentially solve, or win, a game more quickly than naive,

hard-coded, placement.

 The proposed solution uses genetic algorithms, a form of

heuristic algorithm, which is inspired by the evolutionary

paradigm to create an approach that is tailored to the

opponent's strategy. By observing the opponent's placement

and targeting strategies over multiple games, the solution

adapts its strategy to counter the opponent's, which leads ships

to be placed in positions that have been given little attention

and to fire more often at positions which have commonly held

the opponent's ships.

II. METHODOLOGY

 In the field of Artificial Intelligence there are three possible

approaches that are well suited to this problem definition: rule-

based expert systems, genetic algorithms, and neural

networks. All three of these areas of AI can effectively play a

game of Battleship, however, the solution presented in this

paper utilizes genetic algorithms in its approach to Battleship.

Each approach was thoroughly investigated by the authors,

with observations on each method's strengths and weaknesses

discussed below.

 Rule-based expert systems use user-created "rules" to

govern the behavior of the algorithm. These rules are

dependent on the knowledge of the expert who is providing

insight into the game. Since none of the authors of this paper

are experts in Battleship, this approach was discarded in favor

for an approach that does not depend on the authors'

knowledge of the game. More importantly, a rule-based expert

system cannot learn at run-time, though it can make correct

deductions based on the rules that it is given. These are not

dynamic enough to adapt to the opponent's strategies. Rule-

based systems may be efficient for sinking logic as the logic

can be quickly hard-coded with the system optimizing certain

steps. However, other research has proved that such a system

can still be outperformed by code generated by a genetic

algorithm [8].

 An approach utilizing neural networks was discarded due to

the "black box" characteristics of the algorithm, that is, the

inability to see the inner workings of the system. Though the

system is fundamentally much more dynamic than a rule-

based expert system, a solution for ship placement and

shooting is very complex compared to a hard-coded statistical

analysis [9]. Such a system also lacks the ability to easily

represent linear logical instructions, which are needed for ship

sinking.

 To be competitive a solution needs to be able to find enemy

ship placement patterns in order to raise the likelihood of

hitting an enemy ship. Once a ship has been hit, logic needs to

be applied to sink the target. Though this could be hard-coded,

there is proof [8] that heuristic methods may be more effective

than conventional, natural methods. In order to stay in each

game as long as possible, the solution must also find enemy

targeting patterns and attempt to avoid their own learning

systems. To remain competitive the solution needs to adapt

quickly enough to win even in small rounds of eleven or fewer

games. Genetic algorithms can be a powerful method for

finding quick and dynamic solutions at run-time [4]. Solution

representation is dynamic enough to represent the several

components of this problem: Ship placement, shooting, and

sinking.

 According to [3,6,7], Monte Carlo Methods are helpful

when working with non-linear probability densities. One

method explains how to apply Monte Carlo Methods to a two

dimensional grid search when localizing a robot within a given

map [3]. This is helpful for both ship placement and shooting

since a parallel between pastern matching in robot localization

and ship placement can be drawn. Ship sinking is complex as

T

2

it needs run-time logic that can be changed for shot

optimization. Genetic programming is a valid method of

instruction representation and optimization for linear logical

instructions [1].

III. AI IMPLEMENTATION

 The game of Battleship can be split into three distinct areas:

placement of ships, ship targeting, and sinking logic. Ship

placement uses an adaptive statistical method, ship targeting

utilizes a genetic algorithm to find and analyze patterns, and

genetic programming is used to create and optimize the ship-

sinking logic.

 Pre-training the solution is important since an initial

"random" solution might perform too poorly, giving few hits

on the opponent’s ships and little data for training the

targeting algorithm. Each new opponent resets the internal

data to this pre-trained solution set. The pre-training is done

by playing this solution design against several hard-coded

opponents. After each round with the same opponent, the

solution will attempt to optimize for the current opponent's

method of play. If games are to be played against the same

opponent in the future, the optimized solution against that

player could easily be saved and restored.

A. Ship Placement

 The solution to ship placement is an adaptive algorithm that

considers statistical data as well as the opponent’s shot

placement over time. This algorithm uses the number of

different ways a ship can be placed in an individual cell as its

base information. The algorithm then uses a Sequential Monte

Carlo Method to place ships in the probabilistically least likely

location to be shot, but not exclusively [6]. The strength of this

algorithm is in the Sequential Monte Carlo Method which

allows for adaptation at run-time.

 After randomly placing ships within a grid of size 10x10 for

1,000,000 iterations, the number of times a ship is placed in a

certain cell is recorded. Figure 1 shows the sum of the five

ships' probabilities. The graph shows that the randomly placed

ships are symmetric about the center of the grid but are not

completely Gaussian. The inverse of the sum of the grids is

taken and then normalized in order to have locations where the

ship is less likely to be placed with a higher weight.

 A Sequential Monte Carlo Method is implemented in order

to place the ships in the statistically least likely places on the

grid. Monte Carlo Methods use grid-based Markov methods in

order to deal with the multi-modal, non-Gaussian, nonlinear

densities[8]. Monte Carlo Methods have been used since the

1950s to generate weighted random values from given

probability distributions in areas from robot localization to

financial market prediction [6].

 While the placement of ships for the first game is hard

coded and based on prior statistical information, the algorithm

displays intelligence by adapting to the opponent over time.

The algorithm logs the opponent’s shot selections and

decreases the weights of the cells that were targeted during the

previous games when placing the ships. For each game

following the first one, the prior statistical data as well as

newly acquired information about the opponent’s shot

locations will be utilized to place the ships.

 A shortfall of Monte Carlo Methods is their computational

intensity [7]. While ships could be placed in a purely random

fashion, Figure 1 displays that their placement will tend

towards the center of the grid. A smart opponent will notice

this pattern and place more shots around the center than the

corners. By introducing a Monte Carlo sampling method, the

center is still the most likely place a ship will be placed,

however other areas such as the corners will have a higher

likelihood than random placement.

B. Targeting and Shooting

 The core of solving the classic game of Battleship is

adaptive and efficient targeting and shooting. Shot placement

needs to take advantage of the opponent's ship placement

strategies; however, in order to make observations about the

opponent's placements and discover trends, an efficient way to

represent the placement data is needed.

FIGURE 1.

 Random ship placement densities over 1,000,000 rounds.

FIGURE 2.

Different methods of ship placement over 1,000,000 rounds.

From top left, clockwise: Random, lower-left corner favored,

bottom wall, one ship in each corner.

3

 Figure 1 demonstrates the random placement densities of all

five ships on a 10x10 board for over 1,000,000 games. A

pattern emerges in which the center experiences many more

placements since edge squares are not filled by as many ship

placement combinations. Different, but clearly visible,

patterns emerge with different placement algorithms, as seen

in Figures 1, 2, 3, which suggests a pattern-based solution.

 Different methods of ship placement over 1,000,000 rounds.

From top left, clockwise: Random, lower-left corner favored,

bottom wall, one ship in each corner.

 The reader can observe several useful facts from a chart of

this type, most importantly trends in the opponent's

placements. Figure 2 is a chart of several advanced placement

strategies as follows:

 Place all ships starting in the bottom row and extending

upwards

 Place a ship in each corner and the final ship randomly

 Place all ships in the lower left quadrant with high

probability

 However, while this square histogram format is very easy

for a human to understand, it is not easy to generate a three-

dimensional function that can approximate the described

densities. To simplify the problem, the data is concatenated

into a continuous one-dimensional array. The graphs shown in

Figure 2 are shown in the linear format in Figure 3.

FIGURE 3.

Different methods of ship placement over 1,000,000 rounds.

From top to bottom: Random, lower-left corner favored, one

ship in each corner, bottom wall.

 Another observation made is that density graphs

representing placement strategies in this way all resemble a

harmonic wave. Therefore, if a harmonic approximation can

be fitted to this curve, the solution can use the approximation

as a representation of the probability that a ship will appear in

any given square. This approximation will also allow the

probabilities to be more regularly distributed among the

squares, which is helpful when adapting to new strategies. The

representation of data in this way also allows us to create a

composition of multiple strategies, as well as prepare for

expected phenomena such as random placement strategy.

Figure 4 is a graph of a combination of the three strategies

featured in the previous graph as well as the random pattern

strategy.

FIGURE 4.

Combination of strategies and random placement.

 Since all harmonic functions can be decomposed into a

combination of sine and cosine waves, the solution utilizes a

genetic algorithm to fit a series of waves to a probability

function. Each combination of waves is represented as a gene,

and by using crossover and mutation, they converge to the

probability distribution that has been constructed both from

data gained in previous games with the same opponent and

"training" data which is entered before the match begins. Each

gene is made up of five harmonics, with each having four

parameters. The harmonics are represented by the formula

 Figure 6 contains a sample gene of only two harmonics that

solve for random ship placement. The wave represented by the

gene is the summation of these five harmonics. A genetic

algorithm is composed of five basic steps: initialization,

selection, reproduction, termination, and conclusion.

 The initialization step is the creation of the initial

population. In this algorithm the population is maintained at

100 members. When playing with a new opponent, eighty

percent of the initial population is randomly generated, while

the other twenty members are pre-generated at intervals

spanning the problem space. In the case of a game with the

same opponent, the population is carried over from the

previous game or loaded from a saved gene pool.

4

 The selection step chooses which members of the

population will reproduce and pass their traits on to the next

generation. A fitness score determines how successful or poor

a gene is, that is, whether it should be allowed to reproduce.

The fitness score is calculated for each gene by calculating the

discrete cross-correlation between the genetic wave and the

target distribution. The ten members with the highest fitness

are chosen to continue through to the next generation.

FIGURE 5.

Sample curves and correlation values. From top to bottom,

correlation values: 0.5773, 0.4082, 1.0000

FIGURE 6.

A sample gene with two sinusoidal components. Enemy ship

placement is the purple wave, with the gene’s summation as

the green wave: the two components are the red wave on the

bottom and the smooth arch wave. Correlation is 0.702624

 Reproduction occurs between every two genes in the

selected set of genes. This process produces 45 (ten choose

two) new genes, but is applied twice: once with mutation and

once without. The selected set of ten genes is also carried

through unchanged to the next generation, giving the next

generation a total of 100 members.

 Reproduction between two members is called crossover. In

this problem, since the genes form a gestalt, the method of

crossover must be based on the entire wave formed by all the

harmonics of the gene [5], rather than a simple interchange of

its harmonics. Crossover between the aggregate waves is a

problem that requires some mathematically complex analysis.

First the average of the two waves are computed, which is a

perfect child, but is composed of ten sine waves. To reduce the

component count to five, Fourier analysis is employed to

isolate the five harmonics with the highest amplitudes, which

are kept as the components of the child gene. This allows for

the best approximation to the perfect child curve that is only

composed of only five harmonics. To create the mutated

population, a copy of each crossover gene is mutated, which

consists of introducing random coefficients to some or all of

the harmonics. Each coefficient has a 25% chance to be

mutated. The Fourier analysis performed during crossover can

be done by a Fast Fourier Transform (FFT) algorithm, which

has a complexity of O(n logn); this reduces analysis to a

reasonable run-time.

 The problem space is extremely large, since each of the

twenty coefficients of the gene are parameterized over a large

range. However, this is not an important limitation, since

crossover can be shown to converge on the solution in a

reasonable number of generations [5]. To ensure that this

genetic algorithm implementation does not converge on a

local maximum, random coefficient mutations are introduced

during the creating of each new generation.

 This genetic algorithm runs a large number of generations at

the start of each game after the first. Also, in each game after

the initial game; one or more generations are run per turn. The

member with the highest fitness in the most recent generation

is used when the sinking logic (described in the following

section) calls for a random location.

 This shooting algorithm also incorporates a filter which will

never allow the algorithm to return a square that cannot

possibly contain a ship. This means that a checkerboard

pattern is applied for targeting, which will adjust according to

the size of the largest enemy ship remaining.

C. Sinking Logic

 Sinking logic is the linear instruction logic needed when a

ship has been hit, or "locked"; it governs following successive

shots, attempting to sink the entire ship. A simple algorithmic

solution exists, described below, but has a fundamental

weakness. The opponent may place ships in certain patterns to

make sinking more difficult, such as placing ships in parallel,

but an intelligent system can resolve these issues.

 A simple sinking algorithm exists that is based on a three

state finite state machine. The states are "searching", "locked",

and "sinking". Searching is the action of attempting to locate

5

an enemy ship position. When a shot is successful, hitting a

ship, the state is changed into "locked". In this state, the

original shot position is saved and successive shots are placed

in the positions above, below, left, and right of that saved

position. This is to determine the direction of the ship. Once a

successful shot has been made in this state, the direction is

saved and the state is changed to "sinking".

 In this "sinking" state the following shots are placed one

unit ahead, based on the saved direction, from the original shot

position until a miss. This will shoot the length of the ship

until going past the end of the ship. If the ship is not yet sunk

the algorithm reverts back to the original shot that lead us into

the "locked" state and continues shooting, one unit ahead from

the last, in the opposite direction until the ship is sunk.

 This hard-coded solution works well against random ship

placement, but may be optimized to adapt to intelligently

placed ships. The hard-coded solution may not perform well

against special ship placement patterns, such as an intersecting

"T" shape. If an enemy were to more likely place ships in

certain directions, such as vertically, the hard-coded solution

does not adapt and optimize for this. A quickly varying system

with enough logic to implement the above algorithm, as well

as new instructions to extend functionality, is needed. Genetic

programming, an application of genetic algorithms onto an

instruction set, has the ability to create many varying solutions

containing solution logic. Linear genetic programming has

been proven to be a valid approach for linear logic

representation [10] in a genetic programming environment.

Such a system has already been implemented [7] with the

worst performing solution as efficient as the standard hard-

coded algorithm. Since genetic programming has been helpful

for representation of finite state machines [1], the solution

structure is split into three sub states that are three different

blocks of instructions. Each block must explicitly call a

"jump" instruction to move into the next state.

 A formal set of instructions are needed for solution

representation. This set must be simple enough for crossover

and mutation, but also complex enough to implement the basic

algorithm. Extra instructions are added to give the potential of

more dynamic, and perhaps surprising, solutions. For

simplicity, the language is of a linear paradigm without the

concept of looping, instruction redirection, or branching;

thought it does implement conditional state change. Symbolic

regression and standard genetic programming representations

are not used due to their limitation in terms of efficient linear

logic representation [10]. No concept of variables exists

except for a register machine, a series of variables used by the

solution at run-time. These variables have default values when

the gene is initialized, but carry over during state changes.

Each register and instruction is defined in Figure 7.

FIGURE 7.

Variable Name, Variable Description

 TargetPos, The current target location, defaults to (0, 0)

 TempPos, Temporary position, defaults to (0, 0)

 TargetDir, The current target direction, defaults to North

/ up

 TargetHit, Boolean where true if the last shot was

successful in hitting a ship

 TempHit, Temporary boolean flag for internal usage

Instruction Name, Instruction Description

 Target, Find a position, placing into TargetPos, to shoot

at; Managed by the targeting genetic algorithm in the

above section

 Shoot, Shoot at the target position, from TargetPos. Sets

TargetHit to true on a successful hit, sets TargetHit to

false on failure or out of bounds

 MoveFwd, Move the target forward, from TargetPos,

based on current direction, from TargetDir, and places the

new target into TargetPos

 RandDir, Sets, into TargetDir, a random direction.

Manages internally to prevent shooting at already-shot

locations.

 VertDir, Change to face a random vertical direction,

placing into TargetDir. Manages internally to prevent

shooting at already shot locations.

 HorzDir, Change to face a random horizontal direction,

placing into TargetDir. Manages internally to prevent

shooting at already shot locations.

 SavePos, Save the current position from TargetPos into

TempPos.

 LoadPos, Loads the current TempPos position into

TargetPos.

 SetTrue, Set the current TempHit to true

 SetFalse, Set the current TempHit to false

 IfHit, Execute the next line if TargetHit is true, else, jump

to the line after that

 IfMiss, Execute the next line if TargetHit is false, else,

jump to the line after that

 IfTrue, Execute the next line if TempHit is true, else,

jump to the line after that

 IfFalse, Execute the next line if TempHit is false, else,

jump to the line after that

 Nop, No operation; Used as a "blank" instruction

 For clarification a sample problem with the above

instruction set is written in Figure 8. The left column includes

the instructions with the right including line-by-line

descriptions. Each row is representative of the three different

states.

FIGURE 8.

Sample solution; Comments are written in C-style “//”

Targeting state (5/10)

1. Target

2. SavePos // Needed for the next state

3. Shoot

4. IfHit

5. Jump // Jump to the next state

Locking state (10/20)

1. LoadPos

2. VertDir // Check up down

3. MoveFwd

6

4. IfHit

5. Jump // Jump to the next state

6. LoadPos

7. HorzDir // Check left right

8. MoveFwd

9. IfHit

10. Jump // Jump to the next state

Sinking state (9/20)

1. MoveFwd // Keep walking through it

2. Shoot

3. IfMiss // If we went past the end

4. IfTrue // And we have already

// sunk the other side..

5. Jump // Go back to seeking

6. IfMiss // If we went past the end (but have

// not yet sunk the other side...)

7. OppDir // Flip directions

8. IfMiss // Same logic as above

9. LoadPos

 The algorithm used for managing the genetic programming

aspects is outlined in Figure 9 followed with a discussion of

each step. The gene is represented as a block of 50

instructions. This block is subdivided into three sections of 10,

20, 20 representing the three possible states. These blocks are

not continuous and are only accessible with the "jump"

instruction. The first block is small since the targeting logic is

usually very simple (see Figure 8). Instructions always remain

at the top most possible index, with the remaining space filled

with the "no-op" instruction. This is to prevent poor gene

crossing or unnecessarily large code. Each section represents,

in order, the Targeting, Locking, and Sinking states. Such a

design, based on its crossover function, has enough of a

convergence condition to result in more efficient solutions

over time [5].

FIGURE 9.

1. Randomly create an initial population when starting a

new game

2. For each round that is not the first round

a. Repeat the following for a set 20 times

b. Measure the fitness of each gene

c. Select the top 10% of this list

d. Randomly breed the top 10% and grow the

population until the population pool is full

3. Return the best individual gene

 If the opponent is a new player, the base population is

constructed from a pre-trained population with slight

mutations. This pre-trained population comes from a

completely randomized population that is trained by hard-

coded competitors beforehand. Games played by the same

opponent keep their previous population. The maximum

population size is 20 genes. Due to the computer industry's

movement towards multi-core systems, a larger population

might be more plausible as breeding would be split among

many cores [2].

 Once this base population is initialized or carried from a

previous game, a selection is performed both to find

competitive genes for reproduction as well as to find weak

genes for termination. A fitness function is applied to each

gene and a fitness value is assigned. All genes are then sorted

and the top 10% are selected for reproduction. The remaining

90% are removed from the population. This selection method

requires a function to measure the correctness of a gene.

 A fitness function allows for a measurable way to find the

efficiency, or correctness, of a given solution. Each gene

needs to be tested for its success rate as well as for correct

logic. The fitness function returns low values for the most

successful genes, directly representing the number of shots

needed to sink a ship. Genes with low success return high

fitness values, as do logically invalid genes such as those with

infinite looping. This value is generated by running each

solution through all previously saved games from the current

opponent. Shot placements, from the "target" instruction, are

consistent between each fitness function call so that no

variance occurs between genes in this measurement function.

 Once a group of genes are selected a reproduction method is

needed to generate new solutions to fill the population pool.

Reproduction is complex in nature due to the need to

intelligently merge possible solutions. This is further

complicated because the gene data structure contains three

states, or three sub-sections of code, that are independent.

 To counter this problem, a chunk-swapping algorithm with

slight mutation is used. This method is the same as a cross-

over combination between both mates, with slight differences.

Instead of swapping many single instructions at different

locations, a single large randomly-sized chunk is swapped at a

different location per mate. A random size from one to half the

maximum sub-section size of the gene is selected. A random

chunk of the same size is location from the other parent, then

swapped. Both of these new children have a series of

mutations applied. In this solution a low 10% probability of

single instruction mutation per sub-section of code is

reasonable since the chunk-swapping algorithm is a sufficient

convergence condition [5].

 Once the population pool is filled to its maximum size with

new genes, another selection is applied in which only the top

performing gene is returned as the best known solution for the

upcoming game against the current competitor.

 The maximum population size, as well as program size, are

relatively small. This is needed as any larger sizes would grow

the run-time significantly without a major improvement in

creating efficient solutions. In such a case where a larger

population is needed, work for fitness calculations,

reproduction, and simulations can be reduced by splitting it

amongst different cores. As the computer hardware industry

shifts to multi-core processors, such designs can give great

speed reduction benefits [2]. Another optimization could be to

extend the instruction set to be more complete, though this

would grow the solution complexity exponentially.

IV. ANALYSIS

 To empirically test the above solutions a simulation

environment was created. Several hard-coded solutions were

created as competitors against the above defined solution.

7

Each sub-component was tested individually as well as the

entire solution was tested as a whole. Different board sizes as

well as a range of games per round were chosen. This

environment was programmed in C++ and is valid for both

UNIX, Unix-Like systems, as well as WIN32. The analysis

tools are available online at

http://code.google.com/p/battlestar-ai/

 Several hard-coded solutions were created to test each

individual component in this solution as well as attempt to

observe possible opponent ship placement and targeting

patterns. Hard-coded players included random placement of

ships, random shooting, patterned shooting, and hard-coded

sinking logic.

 For each solution paired against itself, there was a

significant increase in chances of winning for the first player,

usually close to 10% for the first player. This shows that a

large advantage is given to the player who shoots first. In an

adaptive solution more hits also allow for patterns to be

recognized in the opponent's ship placement, which is vital to

long-term victory. The checkerboard pattern targeting was

also significantly more efficient than random shot placement,

with a difference of 70% to 30%. Any hard-coded players with

sinking logic were extremely efficient with almost 90%

chance of winning against solutions that do not implement

sinking logic.

V. CONCLUSION

 This paper has presented the outline of an artificially

intelligent Battleship player that combines preloaded training

data and data acquired in previous games to create a dynamic

counter-strategy for any opponent. By utilizing intelligent

placement methods and maintaining a record of the opponent's

firing patterns, this solution places ships in areas of the board

which the opponent has neglected in past games. The

offensive targeting system, based on genetic algorithms,

quickly adapts to take advantage of emerging patterns in the

opponent's placement strategies. Once a hit is achieved, the

player uses sinking logic which has been optimized against

previous placement patterns by the same opponent for a swift

demise of the wounded vessel.

REFERENCES

[1] K. Benson, "Evolving Finite State Machines with Embedded Genetic

Programming for Automatic Target Detection". Congress on

Evolutionary Computation, 2000, vol. 2, pp. 1543-1549. Jul, 2000.

[2] S. M. Cheang; K. Sak; K. H. Lee, "Evolutionary parallel programming:

design and implementation". Evolutionary Computation, vol. 14, n.2, pp.
129-156. Jun. 2006.

[3] F. Dellaert; D. Fox; W. Burgard; S. Thrun, "Monte Carlo Localization

for Mobile Robots". IEEE International Conference on Robotics and
Automation (ICRA99). May, 1999.

[4] IEEE Intelligent Systems staff. "Genetic Programming". IEEE

Intelligent Systems, vol. 15 n. 3, pp.74-84, May 2000.
[5] Q. C. Meng; T. J. Feng; Z. Chen; C. J. Zhou; J. H. Bo, "Genetic

Algorithms Encoding Study and A Sufficient Convergence Condition of

GAs". Systems, Man, and Cybernetics, 1999. IEEE SMC '99, vol. 1, pp.
12-15, Oct. 1999.

[6] N. Metropolis; S. Ulam, "The Monte Carl Method". Journal of the
American Statistical Association, vol. 44, pp. 335-341, Sep. 1949.

[7] D. Monniaux, "An Abstract Monte-Carlo Method for the Analysis of

Probabilistic Programs". ACM SIGPLAN Notices, vol 36, pp. 93-101.
Mar. 2001.

[8] M. Mysinger, "Genetic Design of an Artificial Intelligence to Play the

Classic Game of Battleship". Genetic algorithms and genetic
programming and Stanford, pp. 101-110. 1998.

[9] A. Roy, "Artificial Neural Networks - A Science in Trouble". 2000

ACM SIGKDD, vol. 1, n. 2, pp. 33-38, Jan. 2000.
[10] T. Weise; M. Zapf; K. Geihs, "Rule-based Genetic Programming". Bio-

Inspired Models of Network, Information and Computer Systems, pp. 8-

15, Dec. 2007.

