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The purpose of this paper is to provide a plan for an Artificially Intelligent (AI) player for the classic game of Battleship. In order to 

accomplish this goal, the game is split into three logical areas: ship placement, targeting, and sinking strategy. This paper details the 

specific AI objectives for each area, as well as the implementation of an intelligent system using genetic algorithms. This artificially 

intelligent player will be tested in a competition against other artificially intelligent battleship opponents. 

 

I. INTRODUCTION 

HE CLASSIC game of Battleship involves two players, each 

placing five ships of lengths two, three, three, four, and 

five onto their ten by ten unit board. Taking turns, they select 

board positions to strike. After an entire ship has been struck 

by an opponent it is "sunk" and removed from the board, and 

the player who sunk the ship is notified which type of ship 

was removed. Once all of a player's ships have been removed, 

the game is over and won by the player who still has ships 

remaining. 

    The use of heuristic algorithms, algorithms that provide 

acceptable solutions but lack a formal proof, are become much 

more commonplace in solving both dynamic goal and 

computationally intense problems [4]. They are commonly 

used to search for solutions to NP-complete problems and are 

a popular topic in Artificial Intelligence research. Since the 

game involves another player whose behavior is unknown, no 

formal algorithmic solution exists. However, a heuristic 

algorithm can find arising patterns in the opponent's play and 

potentially solve, or win, a game more quickly than naive, 

hard-coded, placement. 

    The proposed solution uses genetic algorithms, a form of 

heuristic algorithm, which is inspired by the evolutionary 

paradigm to create an approach that is tailored to the 

opponent's strategy. By observing the opponent's placement 

and targeting strategies over multiple games, the solution 

adapts its strategy to counter the opponent's, which leads ships 

to be placed in positions that have been given little attention 

and to fire more often at positions which have commonly held 

the opponent's ships. 

II. METHODOLOGY 

    In the field of Artificial Intelligence there are three possible 

approaches that are well suited to this problem definition: rule-

based expert systems, genetic algorithms, and neural 

networks. All three of these areas of AI can effectively play a 

game of Battleship, however, the solution presented in this 

paper utilizes genetic algorithms in its approach to Battleship. 

Each approach was thoroughly investigated by the authors, 

with observations on each method's strengths and weaknesses 

discussed below. 

    Rule-based expert systems use user-created "rules" to 

govern the behavior of the algorithm. These rules are 

dependent on the knowledge of the expert who is providing 

insight into the game. Since none of the authors of this paper 

are experts in Battleship, this approach was discarded in favor 

for an approach that does not depend on the authors' 

knowledge of the game. More importantly, a rule-based expert 

system cannot learn at run-time, though it can make correct 

deductions based on the rules that it is given. These are not 

dynamic enough to adapt to the opponent's strategies. Rule-

based systems may be efficient for sinking logic as the logic 

can be quickly hard-coded with the system optimizing certain 

steps. However, other research has proved that such a system 

can still be outperformed by code generated by a genetic 

algorithm [8]. 

    An approach utilizing neural networks was discarded due to 

the "black box" characteristics of the algorithm, that is, the 

inability to see the inner workings of the system. Though the 

system is fundamentally much more dynamic than a rule-

based expert system, a solution for ship placement and 

shooting is very complex compared to a hard-coded statistical 

analysis [9]. Such a system also lacks the ability to easily 

represent linear logical instructions, which are needed for ship 

sinking. 

    To be competitive a solution needs to be able to find enemy 

ship placement patterns in order to raise the likelihood of 

hitting an enemy ship. Once a ship has been hit, logic needs to 

be applied to sink the target. Though this could be hard-coded, 

there is proof [8] that heuristic methods may be more effective 

than conventional, natural methods. In order to stay in each 

game as long as possible, the solution must also find enemy 

targeting patterns and attempt to avoid their own learning 

systems. To remain competitive the solution needs to adapt 

quickly enough to win even in small rounds of eleven or fewer 

games. Genetic algorithms can be a powerful method for 

finding quick and dynamic solutions at run-time [4]. Solution 

representation is dynamic enough to represent the several 

components of this problem: Ship placement, shooting, and 

sinking. 

    According to [3,6,7], Monte Carlo Methods are helpful 

when working with non-linear probability densities. One 

method explains how to apply Monte Carlo Methods to a two 

dimensional grid search when localizing a robot within a given 

map [3]. This is helpful for both ship placement and shooting 

since a parallel between pastern matching in robot localization 

and ship placement can be drawn. Ship sinking is complex as 
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it needs run-time logic that can be changed for shot 

optimization. Genetic programming is a valid method of 

instruction representation and optimization for linear logical 

instructions [1]. 

III. AI IMPLEMENTATION 

    The game of Battleship can be split into three distinct areas: 

placement of ships, ship targeting, and sinking logic. Ship 

placement uses an adaptive statistical method, ship targeting 

utilizes a genetic algorithm to find and analyze patterns, and 

genetic programming is used to create and optimize the ship-

sinking logic. 

    Pre-training the solution is important since an initial 

"random" solution might perform too poorly, giving few hits 

on the opponent’s ships and little data for training the 

targeting algorithm. Each new opponent resets the internal 

data to this pre-trained solution set. The pre-training is done 

by playing this solution design against several hard-coded 

opponents. After each round with the same opponent, the 

solution will attempt to optimize for the current opponent's 

method of play. If games are to be played against the same 

opponent in the future, the optimized solution against that 

player could easily be saved and restored. 

 

A. Ship Placement 

    The solution to ship placement is an adaptive algorithm that 

considers statistical data as well as the opponent’s shot 

placement over time. This algorithm uses the number of 

different ways a ship can be placed in an individual cell as its 

base information. The algorithm then uses a Sequential Monte 

Carlo Method to place ships in the probabilistically least likely 

location to be shot, but not exclusively [6]. The strength of this 

algorithm is in the Sequential Monte Carlo Method which 

allows for adaptation at run-time. 

    After randomly placing ships within a grid of size 10x10 for 

1,000,000 iterations, the number of times a ship is placed in a 

certain cell is recorded. Figure 1 shows the sum of the five 

ships' probabilities. The graph shows that the randomly placed 

ships are symmetric about the center of the grid but are not 

completely Gaussian. The inverse of the sum of the grids is 

taken and then normalized in order to have locations where the 

ship is less likely to be placed with a higher weight. 

    A Sequential Monte Carlo Method is implemented in order 

to place the ships in the statistically least likely places on the 

grid. Monte Carlo Methods use grid-based Markov methods in 

order to deal with the multi-modal, non-Gaussian, nonlinear 

densities[8]. Monte Carlo Methods have been used since the 

1950s to generate weighted random values from given 

probability distributions in areas from robot localization to 

financial market prediction [6]. 

    While the placement of ships for the first game is hard 

coded and based on prior statistical information, the algorithm 

displays intelligence by adapting to the opponent over time. 

The algorithm logs the opponent’s shot selections and 

decreases the weights of the cells that were targeted during the 

previous games when placing the ships. For each game 

following the first one, the prior statistical data as well as 

newly acquired information about the opponent’s shot 

locations will be utilized to place the ships. 

    A shortfall of Monte Carlo Methods is their computational 

intensity [7]. While ships could be placed in a purely random 

fashion, Figure 1 displays that their placement will tend 

towards the center of the grid. A smart opponent will notice 

this pattern and place more shots around the center than the 

corners. By introducing a Monte Carlo sampling method, the 

center is still the most likely place a ship will be placed, 

however other areas such as the corners will have a higher 

likelihood than random placement. 

 

B. Targeting and Shooting 

    The core of solving the classic game of Battleship is 

adaptive and efficient targeting and shooting. Shot placement 

needs to take advantage of the opponent's ship placement 

strategies; however, in order to make observations about the 

opponent's placements and discover trends, an efficient way to 

represent the placement data is needed. 

 

FIGURE 1. 

 

 
 Random ship placement densities over 1,000,000 rounds. 

 

FIGURE 2. 

 

 
Different methods of ship placement over 1,000,000 rounds. 

From top left, clockwise: Random, lower-left corner favored, 

bottom wall, one ship in each corner. 
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    Figure 1 demonstrates the random placement densities of all 

five ships on a 10x10 board for over 1,000,000 games. A 

pattern emerges in which the center experiences many more 

placements since edge squares are not filled by as many ship 

placement combinations. Different, but clearly visible, 

patterns emerge with different placement algorithms, as seen 

in Figures 1, 2, 3, which suggests a pattern-based solution. 

    Different methods of ship placement over 1,000,000 rounds. 

From top left, clockwise: Random, lower-left corner favored, 

bottom wall, one ship in each corner. 

    The reader can observe several useful facts from a chart of 

this type, most importantly trends in the opponent's 

placements. Figure 2 is a chart of several advanced placement 

strategies as follows: 

 Place all ships starting in the bottom row and extending 

upwards 

 Place a ship in each corner and the final ship randomly 

 Place all ships in the lower left quadrant with high 

probability 

    However, while this square histogram format is very easy 

for a human to understand, it is not easy to generate a three-

dimensional function that can approximate the described 

densities. To simplify the problem, the data is concatenated 

into a continuous one-dimensional array. The graphs shown in 

Figure 2 are shown in the linear format in Figure 3. 

 

FIGURE 3. 

 

 
Different methods of ship placement over 1,000,000 rounds. 

From top to bottom: Random, lower-left corner favored, one 

ship in each corner, bottom wall. 

    Another observation made is that density graphs 

representing placement strategies in this way all resemble a 

harmonic wave. Therefore, if a harmonic approximation can 

be fitted to this curve, the solution can use the approximation 

as a representation of the probability that a ship will appear in 

any given square. This approximation will also allow the 

probabilities to be more regularly distributed among the 

squares, which is helpful when adapting to new strategies. The 

representation of data in this way also allows us to create a 

composition of multiple strategies, as well as prepare for 

expected phenomena such as random placement strategy. 

Figure 4 is a graph of a combination of the three strategies 

featured in the previous graph as well as the random pattern 

strategy. 

 

FIGURE 4. 

 

 
Combination of strategies and random placement. 

 

    Since all harmonic functions can be decomposed into a 

combination of sine and cosine waves, the solution utilizes a 

genetic algorithm to fit a series of waves to a probability 

function. Each combination of waves is represented as a gene, 

and by using crossover and mutation, they converge to the 

probability distribution that has been constructed both from 

data gained in previous games with the same opponent and 

"training" data which is entered before the match begins. Each 

gene is made up of five harmonics, with each having four 

parameters. The harmonics are represented by the formula 

 

 

 

    Figure 6 contains a sample gene of only two harmonics that 

solve for random ship placement. The wave represented by the 

gene is the summation of these five harmonics. A genetic 

algorithm is composed of five basic steps: initialization, 

selection, reproduction, termination, and conclusion. 

    The initialization step is the creation of the initial 

population. In this algorithm the population is maintained at 

100 members. When playing with a new opponent, eighty 

percent of the initial population is randomly generated, while 

the other twenty members are pre-generated at intervals 

spanning the problem space. In the case of a game with the 

same opponent, the population is carried over from the 

previous game or loaded from a saved gene pool. 
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    The selection step chooses which members of the 

population will reproduce and pass their traits on to the next 

generation. A fitness score determines how successful or poor 

a gene is, that is, whether it should be allowed to reproduce. 

The fitness score is calculated for each gene by calculating the 

discrete cross-correlation between the genetic wave and the 

target distribution. The ten members with the highest fitness 

are chosen to continue through to the next generation. 

 

FIGURE 5. 

 

 
Sample curves and correlation values. From top to bottom, 

correlation values: 0.5773, 0.4082, 1.0000 

 

FIGURE 6. 

 

 
A sample gene with two sinusoidal components. Enemy ship 

placement is the purple wave, with the gene’s summation as 

the green wave: the two components are the red wave on the 

bottom and the smooth arch wave. Correlation is 0.702624 

 

 

    Reproduction occurs between every two genes in the 

selected set of genes. This process produces 45 (ten choose 

two) new genes, but is applied twice: once with mutation and 

once without. The selected set of ten genes is also carried 

through unchanged to the next generation, giving the next 

generation a total of 100 members. 

    Reproduction between two members is called crossover. In 

this problem, since the genes form a gestalt, the method of 

crossover must be based on the entire wave formed by all the 

harmonics of the gene [5], rather than a simple interchange of 

its harmonics. Crossover between the aggregate waves is a 

problem that requires some mathematically complex analysis. 

First the average of the two waves are computed, which is a 

perfect child, but is composed of ten sine waves. To reduce the 

component count to five, Fourier analysis is employed to 

isolate the five harmonics with the highest amplitudes, which 

are kept as the components of the child gene. This allows for 

the best approximation to the perfect child curve that is only 

composed of only five harmonics. To create the mutated 

population, a copy of each crossover gene is mutated, which 

consists of introducing random coefficients to some or all of 

the harmonics. Each coefficient has a 25% chance to be 

mutated. The Fourier analysis performed during crossover can 

be done by a Fast Fourier Transform (FFT) algorithm, which 

has a complexity of O(n logn); this reduces analysis to a 

reasonable run-time. 

    The problem space is extremely large, since each of the 

twenty coefficients of the gene are parameterized over a large 

range. However, this is not an important limitation, since 

crossover can be shown to converge on the solution in a 

reasonable number of generations [5]. To ensure that this 

genetic algorithm implementation does not converge on a 

local maximum, random coefficient mutations are introduced 

during the creating of each new generation. 

    This genetic algorithm runs a large number of generations at 

the start of each game after the first. Also, in each game after 

the initial game; one or more generations are run per turn. The 

member with the highest fitness in the most recent generation 

is used when the sinking logic (described in the following 

section) calls for a random location. 

    This shooting algorithm also incorporates a filter which will 

never allow the algorithm to return a square that cannot 

possibly contain a ship. This means that a checkerboard 

pattern is applied for targeting, which will adjust according to 

the size of the largest enemy ship remaining. 

 

C. Sinking Logic 

    Sinking logic is the linear instruction logic needed when a 

ship has been hit, or "locked"; it governs following successive 

shots, attempting to sink the entire ship. A simple algorithmic 

solution exists, described below, but has a fundamental 

weakness. The opponent may place ships in certain patterns to 

make sinking more difficult, such as placing ships in parallel, 

but an intelligent system can resolve these issues. 

    A simple sinking algorithm exists that is based on a three 

state finite state machine. The states are "searching", "locked", 

and "sinking". Searching is the action of attempting to locate 



5 

 

an enemy ship position. When a shot is successful, hitting a 

ship, the state is changed into "locked". In this state, the 

original shot position is saved and successive shots are placed 

in the positions above, below, left, and right of that saved 

position. This is to determine the direction of the ship. Once a 

successful shot has been made in this state, the direction is 

saved and the state is changed to "sinking". 

    In this "sinking" state the following shots are placed one 

unit ahead, based on the saved direction, from the original shot 

position until a miss. This will shoot the length of the ship 

until going past the end of the ship. If the ship is not yet sunk 

the algorithm reverts back to the original shot that lead us into 

the "locked" state and continues shooting, one unit ahead from 

the last, in the opposite direction until the ship is sunk. 

    This hard-coded solution works well against random ship 

placement, but may be optimized to adapt to intelligently 

placed ships. The hard-coded solution may not perform well 

against special ship placement patterns, such as an intersecting 

"T" shape. If an enemy were to more likely place ships in 

certain directions, such as vertically, the hard-coded solution 

does not adapt and optimize for this. A quickly varying system 

with enough logic to implement the above algorithm, as well 

as new instructions to extend functionality, is needed. Genetic 

programming, an application of genetic algorithms onto an 

instruction set, has the ability to create many varying solutions 

containing solution logic. Linear genetic programming has 

been proven to be a valid approach for linear logic 

representation [10] in a genetic programming environment. 

Such a system has already been implemented [7] with the 

worst performing solution as efficient as the standard hard-

coded algorithm. Since genetic programming has been helpful 

for representation of finite state machines [1], the solution 

structure is split into three sub states that are three different 

blocks of instructions. Each block must explicitly call a 

"jump" instruction to move into the next state. 

    A formal set of instructions are needed for solution 

representation. This set must be simple enough for crossover 

and mutation, but also complex enough to implement the basic 

algorithm. Extra instructions are added to give the potential of 

more dynamic, and perhaps surprising, solutions. For 

simplicity, the language is of a linear paradigm without the 

concept of looping, instruction redirection, or branching; 

thought it does implement conditional state change. Symbolic 

regression and standard genetic programming representations 

are not used due to their limitation in terms of efficient linear 

logic representation [10]. No concept of variables exists 

except for a register machine, a series of variables used by the 

solution at run-time. These variables have default values when 

the gene is initialized, but carry over during state changes. 

Each register and instruction is defined in Figure 7. 

 

FIGURE 7. 

 

Variable Name, Variable Description 

 TargetPos, The current target location, defaults to (0, 0) 

 TempPos, Temporary position, defaults to (0, 0) 

 TargetDir, The current target direction, defaults to North 

/ up 

 TargetHit, Boolean where true if the last shot was 

successful in hitting a ship 

 TempHit, Temporary boolean flag for internal usage 

 

Instruction Name, Instruction Description 

 Target, Find a position, placing into TargetPos, to shoot 

at; Managed by the targeting genetic algorithm in the 

above section 

 Shoot, Shoot at the target position, from TargetPos. Sets 

TargetHit to true on a successful hit, sets TargetHit to 

false on failure or out of bounds 

 MoveFwd, Move the target forward, from TargetPos, 

based on current direction, from TargetDir, and places the 

new target into TargetPos 

 RandDir, Sets, into TargetDir, a random direction. 

Manages internally to prevent shooting at already-shot 

locations. 

 VertDir, Change to face a random vertical direction, 

placing into TargetDir. Manages internally to prevent 

shooting at already shot locations. 

 HorzDir, Change to face a random horizontal direction, 

placing into TargetDir. Manages internally to prevent 

shooting at already shot locations. 

 SavePos, Save the current position from TargetPos into 

TempPos. 

 LoadPos, Loads the current TempPos position into 

TargetPos. 

 SetTrue, Set the current TempHit to true 

 SetFalse, Set the current TempHit to false 

 IfHit, Execute the next line if TargetHit is true, else, jump 

to the line after that 

 IfMiss, Execute the next line if TargetHit is false, else, 

jump to the line after that 

 IfTrue, Execute the next line if TempHit is true, else, 

jump to the line after that 

 IfFalse, Execute the next line if TempHit is false, else, 

jump to the line after that 

 Nop, No operation; Used as a "blank" instruction 

 

    For clarification a sample problem with the above 

instruction set is written in Figure 8. The left column includes 

the instructions with the right including line-by-line 

descriptions. Each row is representative of the three different 

states. 

 

FIGURE 8. 

 

Sample solution; Comments are written in C-style “//” 

Targeting state (5/10) 

1. Target 

2. SavePos  // Needed for the next state 

3. Shoot 

4. IfHit 

5. Jump  // Jump to the next state 

 

Locking state (10/20) 

1. LoadPos 

2. VertDir  // Check up down 

3. MoveFwd 
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4. IfHit 

5. Jump  // Jump to the next state 

6. LoadPos 

7. HorzDir  // Check left right 

8. MoveFwd 

9. IfHit 

10. Jump  // Jump to the next state 

 

Sinking state (9/20) 

1. MoveFwd // Keep walking through it 

2. Shoot 

3. IfMiss  // If we went past the end 

4. IfTrue  // And we have already 

// sunk the other side.. 

5. Jump  // Go back to seeking 

6. IfMiss  // If we went past the end (but have 

// not yet sunk the other side...) 

7. OppDir  // Flip directions 

8. IfMiss  // Same logic as above 

9. LoadPos 

 

    The algorithm used for managing the genetic programming 

aspects is outlined in Figure 9 followed with a discussion of 

each step. The gene is represented as a block of 50 

instructions. This block is subdivided into three sections of 10, 

20, 20 representing the three possible states. These blocks are 

not continuous and are only accessible with the "jump" 

instruction. The first block is small since the targeting logic is 

usually very simple (see Figure 8). Instructions always remain 

at the top most possible index, with the remaining space filled 

with the "no-op" instruction. This is to prevent poor gene 

crossing or unnecessarily large code. Each section represents, 

in order, the Targeting, Locking, and Sinking states. Such a 

design, based on its crossover function, has enough of a 

convergence condition to result in more efficient solutions 

over time [5]. 

 

FIGURE 9. 

 

1. Randomly create an initial population when starting a 

new game 

2. For each round that is not the first round 

a. Repeat the following for a set 20 times 

b. Measure the fitness of each gene 

c. Select the top 10% of this list 

d. Randomly breed the top 10% and grow the 

population until the population pool is full 

3. Return the best individual gene 

 

    If the opponent is a new player, the base population is 

constructed from a pre-trained population with slight 

mutations. This pre-trained population comes from a 

completely randomized population that is trained by hard-

coded competitors beforehand. Games played by the same 

opponent keep their previous population. The maximum 

population size is 20 genes. Due to the computer industry's 

movement towards multi-core systems, a larger population 

might be more plausible as breeding would be split among 

many cores [2]. 

    Once this base population is initialized or carried from a 

previous game, a selection is performed both to find 

competitive genes for reproduction as well as to find weak 

genes for termination. A fitness function is applied to each 

gene and a fitness value is assigned. All genes are then sorted 

and the top 10% are selected for reproduction. The remaining 

90% are removed from the population. This selection method 

requires a function to measure the correctness of a gene. 

    A fitness function allows for a measurable way to find the 

efficiency, or correctness, of a given solution. Each gene 

needs to be tested for its success rate as well as for correct 

logic. The fitness function returns low values for the most 

successful genes, directly representing the number of shots 

needed to sink a ship. Genes with low success return high 

fitness values, as do logically invalid genes such as those with 

infinite looping. This value is generated by running each 

solution through all previously saved games from the current 

opponent. Shot placements, from the "target" instruction, are 

consistent between each fitness function call so that no 

variance occurs between genes in this measurement function. 

    Once a group of genes are selected a reproduction method is 

needed to generate new solutions to fill the population pool. 

Reproduction is complex in nature due to the need to 

intelligently merge possible solutions. This is further 

complicated because the gene data structure contains three 

states, or three sub-sections of code, that are independent. 

    To counter this problem, a chunk-swapping algorithm with 

slight mutation is used. This method is the same as a cross-

over combination between both mates, with slight differences. 

Instead of swapping many single instructions at different 

locations, a single large randomly-sized chunk is swapped at a 

different location per mate. A random size from one to half the 

maximum sub-section size of the gene is selected. A random 

chunk of the same size is location from the other parent, then 

swapped. Both of these new children have a series of 

mutations applied. In this solution a low 10% probability of 

single instruction mutation per sub-section of code is 

reasonable since the chunk-swapping algorithm is a sufficient 

convergence condition [5]. 

    Once the population pool is filled to its maximum size with 

new genes, another selection is applied in which only the top 

performing gene is returned as the best known solution for the 

upcoming game against the current competitor. 

    The maximum population size, as well as program size, are 

relatively small. This is needed as any larger sizes would grow 

the run-time significantly without a major improvement in 

creating efficient solutions. In such a case where a larger 

population is needed, work for fitness calculations, 

reproduction, and simulations can be reduced by splitting it 

amongst different cores. As the computer hardware industry 

shifts to multi-core processors, such designs can give great 

speed reduction benefits [2]. Another optimization could be to 

extend the instruction set to be more complete, though this 

would grow the solution complexity exponentially. 

IV. ANALYSIS 

    To empirically test the above solutions a simulation 

environment was created. Several hard-coded solutions were 

created as competitors against the above defined solution. 
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Each sub-component was tested individually as well as the 

entire solution was tested as a whole. Different board sizes as 

well as a range of games per round were chosen. This 

environment was programmed in C++ and is valid for both 

UNIX, Unix-Like systems, as well as WIN32. The analysis 

tools are available online at 

http://code.google.com/p/battlestar-ai/ 

 

    Several hard-coded solutions were created to test each 

individual component in this solution as well as attempt to 

observe possible opponent ship placement and targeting 

patterns. Hard-coded players included random placement of 

ships, random shooting, patterned shooting, and hard-coded 

sinking logic. 

    For each solution paired against itself, there was a 

significant increase in chances of winning for the first player, 

usually close to 10% for the first player. This shows that a 

large advantage is given to the player who shoots first. In an 

adaptive solution more hits also allow for patterns to be 

recognized in the opponent's ship placement, which is vital to 

long-term victory. The checkerboard pattern targeting was 

also significantly more efficient than random shot placement, 

with a difference of 70% to 30%. Any hard-coded players with 

sinking logic were extremely efficient with almost 90% 

chance of winning against solutions that do not implement 

sinking logic. 

V. CONCLUSION 

    This paper has presented the outline of an artificially 

intelligent Battleship player that combines preloaded training 

data and data acquired in previous games to create a dynamic 

counter-strategy for any opponent. By utilizing intelligent 

placement methods and maintaining a record of the opponent's 

firing patterns, this solution places ships in areas of the board 

which the opponent has neglected in past games. The 

offensive targeting system, based on genetic algorithms, 

quickly adapts to take advantage of emerging patterns in the 

opponent's placement strategies. Once a hit is achieved, the 

player uses sinking logic which has been optimized against 

previous placement patterns by the same opponent for a swift 

demise of the wounded vessel. 
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